Chapter 12
Binary Search Trees, etc.

Binary Search trees are data structures that support dynamic set operations, e.g., Search, Minimum, Maximum, Predecessors, Successors, Insert, and Delete. Thus, the search tree data structure can be used to implement a dictionary and/or a priority queue.

An essential observation is that all these operations take time proportional to the height of the tree. Thus, for a *balanced search tree*, they all take $O(\log(n))$; but for a *degraded tree*, i.e., a linear list, they take $O(n)$. 😌

We will see that for a randomly built search tree, its expected height is $\Theta(\log n)$ through a project. We will also discuss some of the techniques to ensure the balance of such a tree.
Binary Search Trees

A binary search tree is a binary tree that may be empty. A nonempty binary search tree has the following binary-search-tree property: 1) Every element has a key component, whose values are distinct. 2) The keys in the left subtree of the root are smaller than the key in the root. 3) The keys in the right subtree of the root are larger than that in the root. 4) Both the middle and the right subtrees are binary search trees.

Since such a tree is usually not “nearly complete”, it is implemented in a linked structure.
Implementation

Below gives a node in a binary tree in Java:

```java
public class BinaryTreeNode {
    int key;
    BinaryTreeNode left, right, parent;

    public BinaryTreeNode(int key){
        this.key=key;
        left=right=parent=null;
    }
}
```

A binary tree looks like the following:

```java
public class BinaryTree {
    BinaryTreeNode root;

    public BinaryTree(){
        root=null;
    }
}
```

You will play with it in Project 6.
Tree traversal

Traversal is an important operation, which systematically lists all the elements of a data structure.

It is trivial for a list (?), but can be implemented in various ways for a tree: pre-order, in-order, post-order and level-order.

Each of them has its own applications, including evaluation of arithmetical and other expressions. (Cf. Lecture notes, Page 11-22, Functions and program structures, CS2470 System Programming in C/C++).

This important operation will be further discussed for the graph structure later on.

We explore yet another sorting algorithm, based on the in-order traversal of a binary tree.
Yet another sorting algorithm

Below is the \textit{in-order traversal} algorithm, when applied to a binary tree.

\begin{verbatim}
IN-ORDER(x)
1. if x!=NIL
2. IN-ORDER(left[x])
3. Visit(key[x])
4. IN-ORDER(right[x])
\end{verbatim}

\textbf{Claim:} If we apply an in-order traversal on a BST, we will get back a sorted list of its keys.

\textbf{Proof by strong induction on} \(n\): When the tree contains only one node, it is trivial.

Assume it is true for a tree containing less than \(n(\geq 1)\) nodes, we now prove it also holds for a tree with \(n\) nodes via strong induction.

We observe that both the left and right sub-trees contain less than \(n\) nodes(?).
The inductive case

When applying the in-order traversal to a tree, we apply it to the left-subtree first, since it contains strictly less than \(n(\geq 0) \) nodes, by the inductive assumption, this part will sort out all the nodes in the left-subtree.

The traversal algorithm then prints out the key of the root that, by definition of BST, is in the right place (?).

Finally, it goes to the right-subtree. By the same token, this second part also sorts out all the keys in the right-subtree.

Thus, the traversal indeed correctly sorts out all the keys 😊.

Is this similar to the argument for Quicksort?
This sorting is linear

Through an analysis similar to what we did for the Quicksort, we can also show (Check out the following few pages, Page 8 through 10), it takes $\Theta(n)$ time, on average, to traverse a binary tree in an in-order way.

Question: Have we found a general $\Theta(n)$ comparison based sorting algorithm?

No: It takes $\Omega(n \log n)$ to set up a BST for n elements.

Homework: Exercises 12.1-1(*), 12.1-2(*) and 12.1-5.
Why is this sorting linear?

Theorem 12.1. If x is the root of an n–node subtree, then it takes $\Theta(n)$ on average to traverse a binary tree in an in-order way.

Proof: Let $T(n)$ stand for the time in question. The procedure takes a small constant time to process an empty tree. In general, assume it applies to a node x, whose left subtree has k nodes, thus its right one has $n - 1 - k$ nodes, where $k \in [0, n - 1]$.

Assume it takes c (respectively, d) units of time to check a pointer (respectively, “visit x”), we have the following recurrence:

\[
T(0) = c
\]
\[
T(n) = \frac{1}{n} \sum_{k=0}^{n-1} [T(k) + T(n - 1 - k) + d]
\]
\[
= \frac{2}{n} \sum_{k=0}^{n-1} T(k) + d.
\]
From

\[nT(n) = 2 \sum_{k=0}^{n-1} T(k) + dn. \] \hspace{0.75cm} (1)

we can similarly get the following:

\[(n - 1)T(n - 1) = 2 \sum_{k=0}^{n-2} T(k) + d(n - 1). \] \hspace{0.75cm} (2)

We subtract Eq. 2 from Eq. 1 to derive

\[
\begin{align*}
 & nT(n) - (n - 1)T(n - 1) \\
 = & \ 2 \left[\sum_{k=0}^{n-1} T(k) - \sum_{k=0}^{n-2} T(k) \right] + d(n - n + 1) \\
 = & \ 2T(n - 1) + d.
\end{align*}
\]

Now, we have

\[nT(n) = (n + 1)T(n - 1) + d. \]

Divide both sides by \(n(n + 1) \), we get the following:

\[\frac{T(n)}{n + 1} = \frac{T(n - 1)}{n} + \frac{d}{n(n + 1)}. \]
We can now apply the *telescope* technique.

\[
\frac{T(n)}{n + 1} = \frac{T(n - 1)}{n} + \frac{d}{n(n + 1)}
\]

\[
= \left[\frac{T(n - 2)}{n - 1} + \frac{d}{(n - 1)n} \right] + \frac{d}{n(n + 1)}
\]

\[
= \ldots
\]

\[
= T(0) + d \sum_{k=1}^{n} \frac{1}{k(k + 1)}
\]

\[\text{telescope} \quad \Rightarrow \quad c + \frac{n}{n + 1}d.\]

Check out Page 8 of the Math (p)review chapter for the last step, as why

\[
\sum_{k=1}^{n} \frac{1}{k(k + 1)} = \frac{n}{n + 1}.
\]

Therefore,

\[
T(n) = c(n + 1) + dn = (c + d)n + c
\]

\[= \Theta(n).\]
The search operation

We begin at the root. If it is NIL, then k can’t be found. Otherwise, we compare k with the key of the root. If they are equal, we are done. If it is larger than the key of the root, it must be in the right subtree, if it is inside the tree at all; so, we recursively search for k in the right subtree. Otherwise, we search the left one.

TREE-SEARCH(x, k)
1. if $x=$NIL or k=key[x]
2. then return x
3. if k<key[x]
4. then return TREE-SEARCH(left[x],k)
5. else return TREE-SEARCH(right[x],k)

We can easily write a non-recursive search procedure. (Cf. Exercise 6.2-5 in the sampler)

Obviously, the search can be done in $O(h)$, where h is the height of the tree.

Question: Does it remind us of binary search?
Minimum and maximum

By the very structure of a BST, anything less than the key in a node is on its left subtree. Hence, the minimum key has to be in the left subtree of everything, and itself can’t have a left child. (Minimum in a maxHeap...) This observation leads to the following procedure.

TREE-MINIMUM(x)
1. If x=NIL
2. then return NIL
3. else
4. while left(x)!=NIL
5. do x<-left[x]
6. return x

The search can be done in $O(h)$, where h is the height of the tree.

The procedure for finding the maximum is symmetric.
Successor and predecessor

Given a node, x, in a BST, its successor is the next node in the in-order sequence of all the nodes in the tree. In other words, the successor of x is the smallest node among all those larger than x.

We need to consider two cases: If the right sub-tree of x exists, i.e., if $\text{right}[x]!=$NIL, its successor is simply the minimum of the subtree rooted at $\text{right}[x]$, as we just went through.

When $\text{right}[x]$ is empty, x has to be the maximum element of the “minimum tree”, where it is located. Thus, none of the elements in this minimum tree could be its successor.

In fact, the successor of x has to be the parent, y, of r, the root of such a tree, and r has to be the left child of y.
How to get it?

Technically, in the former case, we return the minimum of $right(x)$; and in the latter case, we return the parent of a left child which is the root of the minimum tree that contains x.

TREE-SUCCESSOR(x)
1. if right(x)! = NIL
2. then return TREE-MINIMUM(right(x))
3. y <- p[x]
4. while y != NIL and x = right[y]
5. do x <- y
6. y <- p[y]
7. //Notice that y could be NIL if the
8. //minimum tree is the whole tree
9. return y

The successor and the similar predecessor procedures also run in $O(h)$.

Homework: Exercises 12.2-1, 12.2-5(*)
The insertion operation

To insert an element with key k into a BST, we first verify that this key does not occur anywhere inside the tree by doing a search.

If the search succeeds, the insertion will not be done, or maybe a frequency field is updated; otherwise, the element will be inserted where the search reports a failure.

The following shows an example, where we add in 13 into a BST.

The procedure also takes $O(h)$, where h is the height of the tree.
The code

Below is a non-recursive version, called with TREE-INSERT(root[T], z), where T is a BST and z refers to a node to be inserted into T.

TREE-INSERT(x, z)
1. y<-NIL //refers to parent of x
2. while x!=NIL
3. do y<-x
4. if key[z]<key[x]
5. then x<-left[x]
6. else x<-right[x]
7. p[z]<-y
8. if y=NIL //empty tree
9. then root[T]<-z
10. else if key[z]<key[y]
11. then left[y]<-z
12. else right[y]<-z

Question: How about a recursive version?
A bit more details

In terms of its implementation, put the value into a node z, we look for the insertion point, starting at the root, based on the BST property, as indicated by x in the code, and use y to keep track of its parent.

When the insertion point is found, if the tree is empty, when y is NIL, we directly add in the node as the only one in the tree. Otherwise, depending on the relationship between the keys in z and y, we will add in z as either the left or the right child of y, as y is always set to be the parent of z.

Here the reference y plays a role similar to the prev reference in the doubly linked list, so we don’t need to completely hunt down the parent.

Homework: Exercises 12.3-1(*), 12.3-2 and 12.3-3(*).
The deletion operation

If the node to be deleted is a leaf, we simply delete it. It is also easy to do when it has just one child.

When it has two children, it becomes a bit tricky, since we have only one location for two nodes to be hooked on.
The code

TREE-DELETE(T, z)
1. if left[z]=NIL or right[z]=NIL
2. then y<-z
3. else y<-TREE-SUCCESSOR(z)
4. if left[y]!=NIL
5. then x<-left[y]
6. else x<-right[y]
7. if x!=NIL
8. then p[x]<-p[y]
9. if p[y]=NIL
10. then root[T]<-x
11. else if y=left[p[y]]
12. then left[p[y]]<-x
13. else right[p[y]]<-x
14. if y!=z
15. then key[z]<-key[y]
16. copy y’s data into z
17. return y

Homework: Walk through the code.... How about a recursive version?
A bit more details

When deleting a node z from the tree, we first decide if z has no children, or has one, or two children.

In the first two cases, we can set z to y, the one to be deleted. In the last case, we set y to be the successor of z and will copy over its value to the node where z locates, and delete y instead. Note that in this case, y will have its left child empty. Now, y has at most one child (Cf. Exercise 12.3-6).

We then set x to point to this child, and delete y in line 7, by adjusting the parent pointer of x to be that of y. We finally set x to be a child of y's parent.

Homework: Exercise 12.3-6(*)
BST could be high

If insertion and deletions are made at random, then the height of such a BST will be $O(\log n)$, which leads to $O(n \log n)$ to build a BST. Indeed, if we randomly insert n keys into an initially empty BST to obtain a randomly built BST, we get the following result:

Theorem 12.4. The expected height of a randomly built BST on n keys is $O(\log n)$.

Amelia is to give us a proof. 🌸

Argument via experiment: Project 6. Steve did it!

On the other hand, if we use the original insertion function to add in element $1, 2, \ldots, n$, in an empty BST, then the resulted BST is actually a linear list.

As a result, a basic operation can take as much as $O(n)$. 😞
AVL trees

We want to define the BST operations in such a way that the trees stay balanced all the time, while preserving the binary search tree properties.

The essential algorithms for insertion and deletion will be exactly the same as for BST, except that as they might destroy the property of being balanced, we have to restore the balance of the tree, if needed. Such a tree is called a balanced tree, it is guaranteed that all the basic operations applied to a balanced tree will be done in $\Theta(\log n)$.

The class of AVL trees is one of the more popular balanced trees. An nonempty binary tree with T_L and T_R as its left and right subtrees is an AVL tree if and only if both T_L and T_R are AVL trees, and $|h_L - h_R| \leq 1$.

For another class, the Black and Red trees, check out Chapter 13 of the textbook.
AVL search trees

An AVL search tree is a binary search tree such that

1. the height of an AVL tree with \(n \) nodes is \(O(\log n) \);

2. for every \(n \geq 0 \), there exists an AVL tree with \(n \) nodes (\(? \));

3. we can search an \(n \)–element AVL search tree in \(O(\log n) \);

4. a new element can be added into an \(n \)–element AVL tree, in \(O(\log n) \), so that the resulted \((n+1) \)–element tree is also an AVL tree, and;

5. an element can be deleted from an \(n \)–element AVL search tree, in \(O(\log n) \), and the resulted \((n-1) \)-element tree is also an AVL tree.
Fibonacci tree

Question: What is the least number of nodes in a balanced binary tree with height h?

Let $S(h)$ be this number. Obviously, $S(0) = 1$ and $S(1) = 2$. Notice a balanced tree with height 1 could contain either two or three nodes.

In general, we can construct such a balanced tree with height h by merging two subtrees of heights $h - 1$ and $h - 2$, each of which has the least number of nodes.

We call such trees *Fibonacci trees* for the obvious reason.

Now what?
A bit math.

Assume that for all $1 \leq h' < h, S(h') \geq fib(h')$.

\[
S(h) = S(h - 1) + S(h - 2) + 1 \\
\geq fib(h - 1) + fib(h - 2) + 1 \\
= fib(h) + 1 > fib(h).
\]

Hence, for all $h \geq 1, S(h) \geq fib(h)$.

Moreover, assume for all $1 \leq h' < h, fib(h') \geq \left(\frac{3}{2}\right)^{h'-1}$, then

\[
fib(h) = fib(h - 1) + fib(h - 2) \\
\geq \left(\frac{3}{2}\right)^{h-2} + \left(\frac{3}{2}\right)^{h-3} \\
= \left(\frac{3}{2}\right)^{h-1} \times \left[\frac{2}{3} + \frac{4}{9}\right] \\
= \frac{10}{9} \left(\frac{3}{2}\right)^{h-1} > \left(\frac{3}{2}\right)^{h-1}.
\]

Therefore, for all $h \geq 1, S(h) \geq \left(\frac{3}{2}\right)^{h-1}$.

Height of an AVL tree

Given an AVL tree with n nodes of height $h \geq 1$, we have that

$$n \geq S(h) \geq \left(\frac{3}{2}\right)^{h-1}$$

Further calculation leads to the following result,

$$h \leq \frac{\log n}{\log 3 - 1} + 1 = \Theta(\log n).$$

A simpler, but yet proved, result is that

$$h \leq \log(n + 1) + 0.25.$$

This takes care of the height of an AVL tree, i.e., Items 1 and 3. Now, we move to Items 4 and 5, where we will show that, after an insertion and deletion, how to restore the balance, if necessary.
Represent an AVL tree

An AVL tree is usually represented using the linked representation for binary trees.

To provide information to restore the balance, a *balance factor* is added to each node. For any node, this factor is defined to be the difference between the heights of its left and right subtrees.

![AVL Tree Diagram]

Question: Why the balance factor of the node containing 25 in the tree on the left is “-1”?

It is easy to see that any search takes $O(\log n)$.

27

Restore the Balance (I)

When a tree becomes unbalanced, as a result of either insertion or deletion, we can restore its balance by *rotating* the tree at and/or below the node where the imbalance is detected.

Case 1: Assume that the left subtree rooted at k_2 has height larger than that of its right subtree plus 1, caused by deleting a node from the right subtree or inserting a node into the left one. We apply a *left rotation*, which will restore the balance of the tree rooted at k_1.

Notice that this rule is symmetric.
Restore the Balance (II)

Case 2: Suppose that the imbalance is caused by the right subtree rooted at k_3 being too high, whose balance can’t be restored by a single rotation. We must apply two successive single rotations, combined into the following (R-L) double rotation rule.

Similarly, if the left subtree is too high, we can apply the following (L-R) double rotation.

![Diagram](Image)

29
Two examples

Below shows an application of single rotation rule to adjust the balance, also demonstrating Item 2.

Similarly, the following shows an application of a (R-L) double rotation rule.
Histogramming

We start with a collection of n keys and want to output a list of distinct keys and their frequencies. Assume that $n = 10$, and $keys = [2, 4, 2, 2, 3, 4, 2, 6, 4, 2]$.

<table>
<thead>
<tr>
<th>key</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Question: How to do it?

When the range of those keys is quite small, this problem can be solved very easily, in $\Theta(n)$, by using an array $h[0..r]$, where r is the maximum key value, and letting $h[i]$ store the frequency of i.
More general cases

When the key values are not integers, we can sort the n keys, in $\Theta(n \log n)$, then scan the sorted list from left to right to find the frequencies of respective keys.

This solution can be further improved, when m, the number of distinct keys, is quite small. We can use a (balanced) BST tree, each of whose nodes contains two fields, key and frequency. We insert all the n keys into such a tree, when a key is already there, we simply increment its frequency by 1.

This procedure takes an expected complexity of $\Theta(n \log m)$. When a balanced tree is used, this complexity is guaranteed, even in the worst case.

We need this stuff for Project 7.