Chapter 10
Functional Dependencies

We will discuss a fundamental concept in database design, the functional dependence, (FD). Basically, a FD is a many-to-one relationship from one set of attributes to another within a given relvar.

For example, in the shipments relvar SP, there is such a dependency from the $\{S\#, P\#\}$ to $\{QTY\}$. This dependence means that 1) for any given value for the pair $\{S\#, P\#\}$, there is just one corresponding value of QTY, and 2) many distinct values of the pair of $S\#$ and $P\#$ can have the same corresponding QTY value.
Basic definitions

Given the following value of a relvar SCP:

<table>
<thead>
<tr>
<th>S#</th>
<th>CITY</th>
<th>P#</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>London</td>
<td>P1</td>
<td>100</td>
</tr>
<tr>
<td>S1</td>
<td>London</td>
<td>P2</td>
<td>100</td>
</tr>
<tr>
<td>S2</td>
<td>Paris</td>
<td>P1</td>
<td>200</td>
</tr>
<tr>
<td>S2</td>
<td>Paris</td>
<td>P2</td>
<td>200</td>
</tr>
<tr>
<td>S3</td>
<td>Paris</td>
<td>P2</td>
<td>300</td>
</tr>
<tr>
<td>S4</td>
<td>London</td>
<td>P2</td>
<td>400</td>
</tr>
<tr>
<td>S4</td>
<td>London</td>
<td>P4</td>
<td>400</td>
</tr>
<tr>
<td>S4</td>
<td>London</td>
<td>P5</td>
<td>400</td>
</tr>
</tbody>
</table>

We firstly consider the definition of FD, for the value of a specific relvar at a particular time.

Let r be a relation, and let X and Y be arbitrary subsets of the set of attributes of r. Then we say that Y is functionally dependent on X, $X \rightarrow Y$ iff each X value in r has associated with it precisely one Y value in r.
For example, \{S\#\} \rightarrow \{CITY\}. Besides this FD, indeed, SCP also satisfies several other FDs:

1. \{S\#,P\#\} \rightarrow \{QTY\}
2. \{S\#,P\#\} \rightarrow \{CITY\}
3. \{S\#,P\#\} \rightarrow \{CITY, QTY\}
4. \{S\#,P\#\} \rightarrow \{S\#\}
5. \{S\#,P\#\} \rightarrow \{S\#,P\#,CITY,QTY\}
6. \{S\#\} \rightarrow \{QTY\}
7. \{QTY\} \rightarrow \{S\#\}

The left- and right-hand sides of an FD are sometimes called the determinant and the dependent, respectively. When such a set consists of just one attribute, we often drop the set braces. E.g., S\# \rightarrow CITY.
We are more interested in another case, i.e., the FDs not only hold for the value of a relvar for the moment, but for all the possible values that relvar could have.

For example, $S\# \rightarrow \text{CITY}$ holds for all possible values of SCP, since at any given time, a given supplier has precisely one corresponding city, thus, any two tuples appearing in SCP at the same time with the same supplier number must necessarily have the same city as well.
The general definition

Let R be a relation variable, and let X and Y be arbitrary subsets of the attributes of R. Then we say that Y is functionally dependent on X, $X \rightarrow Y$, iff, in every possible legal value of R, each X value has associated with it precisely one Y value.

From now on, by FD, we mean this more demanding, time-independent sense. Below are some examples:

\[
\{S\# , P\# \} \rightarrow \{QTY\} \\
\{S\# \} \rightarrow \{CITY\}
\]

We also have the following, implied, FDs:

\[
\{S\# , P\# \} \rightarrow \{S\# \} \\
\{S\# , P\# \} \rightarrow \{CITY\} \\
\{S\# , P\# \} \rightarrow \{CITY, QTY\}
\]

We notice that $\{S\# \} \rightarrow \{QTY\}$ does not hold in general for SCP (?)
A couple of points

1. FDs are derived from user’s specification. For example, when asking users about the relationship among various attributes in SCP, they might tell us that a supplier is based in only one place, which leads to \(\{S\# \} \rightarrow \{\text{CITY}\} \).

Some of them also come out of common sense. For example, \(S\# \) alone does not uniquely identify \(\text{QTY} \), we have to add in \(P\# \) as well. Thus, the FD: \(\{S\#, \ P\# \} \rightarrow \{\text{QTY}\} \).

2. FDs are closely related to candidate keys, since they uniquely identify things. More specifically, if \(X \) is a candidate key of \(R \), then all attributes \(Y \) of \(R \) must be functionally dependent on \(X \).
3. Any FD can be enforced by applying an integrity constraint. For example, the FD: \{S#\} → \{CITY\} can be enforced with the following integrity constraint on relvar SCP:

```
CONSTRAINT S#_CITY__FD
  COUNT(SCP{S#})=COUNT(SCP{S#,CITY});
```

As a relvar usually comes with a large number of FDs, we would like to find a way to cut the number of FDs to its minimum, in the sense that it will tell the same story, but in the fewest words.

More specifically, for a given FD set \(S \), we want to find some other FD set \(T \), such that \(|T| \ll |S|\), and every FD in \(S \) is implied by some FD in \(T \). If such a set \(T \) can be found, then the DBMS only needs to enforce (a much smaller) \(T \), while every FD in \(S \) is automatically enforced.

There exists an algorithm to do just that.
4. FDs are used to derive well-designed database tables, particularly in cutting down redundancy.

In fact, if R satisfies an FD $A \rightarrow B$, but A is not a candidate key, then R will involve some redundancy. For example, in the above value of SCP, \{S#\} \rightarrow \{CITY\}, but S# is not a candidate key, thus, the CITY information will appear many times. This is bad.

We can use FDs to guide us through a process to eliminate such redundancy, which will be fully discussed in the next Chapter.

Homework: Exercise 11.1.