
Chapter 3

Data Representation
and Linear Structures

We begin the study of data structure with data

representation, i.e., different ways to store data

in computer memory. In this chapter, we will

study how to represent data with linear struc-

ture.

A data type is a set of values. For example,

1. Boolean = {true, false}.
2. integer = {0,±1,±2, · · ·}.
3. Character ={a, b, · · · , z, A, B, · · · , Z}.
4. String ={a, b, · · · , aa, ab, · · ·}.

A data type can be either primitive, or compos-

ite, for which every value is composed of values

of other data types. For example, Character is

primitive, but String is composite.

1

Data structures

The instances of a data type are usually re-

lated. For example, for the Character type, a

is the first element, b is the second, c is the

next one, etc.. In the natural number 675, 6

is the most significant digit, 7 is the next, and

5 is the least significant digit.

For each data type, there usually exists a col-

lection of functions that transform one instance

into another, or simply create a new instance

based on some existing ones. For example, the

addition function.

A data structure consists of a data type, the in-

terrelationship among its values, together with

a set of functions defined on its values.

2

Data types in C++

C++ comes with some of the most frequently

used data objects and their frequently used

functions such as integer(int,) Real (float,)

Character(char,) etc. All other data types we

may use can be composed based on the stan-

dard types, with the help of C++’s enumera-

tion and grouping facilities. For example, the

String type can be represented by using a char-

acter set array s as follows:

char s[MaxSize];

3

The linear structures

In general, a linear list is a data object whose

values are of the form (e1, e2, · · · , en), where ei

terms are the elements of the list, and n, a

finite number, is its length.

When n = 0, the list is empty. Otherwise, e1
is the first element, and en is the last one. For

any other i, ei precedes ei+1. This is called the

precedence relation for the linear list type.

The linear list type is used a lot in real life,

e.g., an alphabetized list of students, a list of

test scores, etc..

4

End of the beginning

We immediately have the following list of func-

tions, thinking about these applications: cre-

ate a list; determine if a list is empty; find out

the length of a list; find out the kth element

in a list; Search for a given element; delete an

element in a list; and insert another element in

a list, etc..

Any data type can be specified as an Abstract

Data Type, which is independent of any repre-

sentation. All representation must satisfy this

specification.

5

The List ADT

Instances: ordered finite collection of zero or

more elements.

Operations: Create() constructs an empty list.

Destroy() erases the list.

Is empty() returns true if the list is empty, oth-

erwise, returns false.

Length() returns the size of the list.

Find(k, x) returns the kth element of the list,

and put it in x; returns false, if the size is

smaller than k.

void Search(x) returns the position of x.

Delete(k, x) deletes the kth element of the list,

and put it in x; returns the modified list.

Insert(k, x) adds x just after kth element.

Output(out) puts the list into the output stream

out.

6

Formula-based representation

A formula-based representation uses an array

to represent the instances of an object. Each

position of the array, called a cell or a node,

holds one element that makes up an instance of

that object. Individual elements of an instance

are located in the array, based on a mathe-

matical formula, e.g., a simple and often used

formula is

Location(i) = i − 1,

which says the ith element of the list is in po-

sition i − 1. We also need two more variables,

length and MaxSize, to completely character-

ize the list type.

7

The List class

template<class T>

class LinearList {

public:

LinearList(int MaxListSize = 10);

~LinearList() {delete [] element;}

bool IsEmpty() const {return length == 0;}

int Length() const {return length;}

bool Find(int k, T& x) const;

int Search(const T& x) const;

LinearList<T>& Delete(int k, T& x);

LinearList<T>& Insert(int k, const T& x);

void Output(ostream& out) const;

private:

int length;

int MaxSize;

T *element; // dynamic 1D array

};

8

Implement operations

The Create() operation is implemented as a

class constructor.

LinearList<T>::LinearList(int MaxListSize){

MaxSize = MaxListSize;

element = new T[MaxSize];

length = 0;

}

The following line creates a linear list y of in-

tegers with its length being 100.

LinearList<int> y (100);

The Destroy() operation is similarly implemented

as a class destructor.

9

The find and search operations are implemented

as follows:

bool LinearList<T>::Find(int k, T& x) const

{// Set x to the k’th element of the list.

// Return false if no k’th; true otherwise.

if (k < 1 || k > length) return false;

x = element[k - 1];

return true;

}

int LinearList<T>::Search(const T& x) const

{// Locate x. Return position of x if found.

// Return 0 if x not in list.

for (int i = 0; i < length; i++)

if (element[i] == x) return ++i;

return 0;

}

10

To delete an element from a list, we have to

make sure that it is in the list; if that is the

case, we will copy it over. Otherwise, we will

throw back an exception.

LinearList<T>&LinearList<T>::Delete(int k,T& x){

// Set x to the k’th element and delete it.

// Throw an exception if no k’th element.

if (Find(k, x)) {//move elements down

for (int i = k; i < length; i++)

element[i-1] = element[i];

length--;

return *this;

}

else throw OutOfBounds();

return *this; // visual needs this

}

When there is no kth element, it takes Θ(1);

Otherwise, it takes Θ(length − k).

11

Similarly, when we insert one more element

into a list after the kth position, we have to

check first if there is enough space; if there

is, we have to move up all the element from

the kth position on, then copy the new element

into the kth position.

Below are the codes for output.

void LinearList<T>::

Output(ostream& out) const{

for (int i = 0; i < length; i++)

out << element[i] << " ";

}

ostream& operator<<(ostream& out,

const LinearList<T>& x)

{x.Output(out); return out;}

12

Work with lists

#include <iostream.h>

#include "llist.h"

#include "xcept.h"

void main(){

LinearList<int> L(5);

cout << "Length = " << L.Length() << endl;

cout << "IsEmpty = " << L.IsEmpty() << endl;

L.Insert(0,2).Insert(1,6);

cout << "List is " << L << endl;

cout << "IsEmpty = " << L.IsEmpty() << endl;

int z;

L.Find(1,z);

cout << "First element is " << z << endl;

cout << "Length = " << L.Length() << endl;

L.Delete(1,z);

cout << "Deleted element is " << z << endl;

cout << "List is " << L << endl;

}

13

Performance evaluation

The formula-based representation leads to sim-

ple C++ functions, and low time complexities.

On the negative side, it leads to inefficient use

of space. For example, if we have to maintain

three lists, for which we know that they will

not contain more than 5,000 elements at any

time.

However, since it is quite possible that any of

those lists can contain 5,000 elements at one

time, we have to assign 5,000 nodes for all the

three lists, 15,000 nodes in total.

14

Homework

3.1. A shortcoming of the LinearList class is
the need to predict the maximum possible size

of the list. One possible improvement is to
start the MaxSize with 1, then double the size

whenever a need arises, create a new list with

the doubled size, copy over the values, finally
delete the original list. A similar action is per-

formed when the size is reduced to a quarter
of the current value of MaxSize. (i) Obtain

a new implementation of the list by applying

this idea. (ii) Consider any sequence of n op-
erations starting with an empty list, assuming

that the total step count of the original imple-
mentation takes f(n, show that under the new

implementation, the state count will be cf(n,)
for some constant c.

3.2. Extend the LinearList class by adding a
function reverse, which, given a list, will send

back its reverse.
15

3.3. Extend the LinearList class by adding a

private member Current, which indicates the

current position in the list. The functions to

be added include Reset, setting Current to 1;

Current, returning the current element; End,

returning true iff Current is at the end of the

list, and Front, Next and Previous.

3.4. Assume that we use location(i) = i to

represent a linear list, modify the declaration

and implementation of the linear list class.

For all the above homework, you need to sub-

mit source code and sample output.

16

Linked lists

One way to overcome the inefficiency problem

of the previous approach is to assign space on

a need-only base. No space will be assigned

if there is no need; and whenever there is a

need, another piece of space will be assigned

to an element. Since, we can’t guarantee all

the pieces of spaces assigned at different times

will be physically adjacent, besides the space

assigned for the elements, we also have to keep

track of the location information of previously

assigned pieces.

Hence, in a linked representation, each element

of an instance is presented in a cell or node,

which also contains a pointer that keeps infor-

mation about the location of another node.

17

More specifically, let L = (e1, · · · , en) be a linear

list. In a linked representation of L, every ei is

represented in a separate node. A node also

contains a link field that is used to locate the

next element in the list. Thus, for every 1 ≤ i <

n, ei is linked to ei+1. A variable first locates

e1, and as en has no node to link to, its link

field contains NULL. Such a structure is called

a singly linked list, or a chain.

18

The linked list class

class ChainNode{

friend Chain<T>l

private:

T: data;

ChainNode<T>* link;

}

class Chain {

friend ChainIterator<T>;

public:

Chain() {first = 0;}

~Chain();

bool IsEmpty() const {return first == 0;}

int Length() const;

bool Find(int k, T& x) const;

int Search(const T& x) const;

Chain<T>& Delete(int k, T& x);

Chain<T>& Insert(int k, const T& x);

void Output(ostream& out) const;

private:

ChainNode<T> *first;

};

19

Operations

We can create an empty list of integers in the

following way:

Chain<int> L;

The following code destroys a linked list.

Chain<T>::~Chain(){

ChainNode<T> *next; // next node

while (first) {

next = first->link;

delete first;

first = next;

}

}

Its complexity is Θ(n), where n is the current

length.

20

Implement Search(x)

The following codes implement the search func-

tions:

int Chain<T>::Search(const T& x) const{

// Locate x. Return position of x if found.

// Return 0 if x not in the chain.

ChainNode<T> *current = first;

int index = 1; // index of current

while (current && current->data != x) {

current = current->link;

index++;

}

if (current) return index;

return 0;

}

It is to see that its complexity is O(n), where

n is the current length.

21

Implement the Delete(k, x)

Chain<T>& Chain<T>::Delete(int k, T& x){

if (k < 1 || !first)

throw OutOfBounds(); // no k’th

ChainNode<T> *p = first;

if (k == 1) // p already at k’th

first = first->link; // remove

else { // use q to get to k-1’st

ChainNode<T> *q = first;

for (int index = 1;

index < k - 1 && q; index++)

q = q->link;

if (!q || !q->link)

throw OutOfBounds();

p = q->link; // k’th

q->link = p->link;}

x = p->data;

delete p;

return *this;

}

22

A chain iterator

We often need to go through the whole list,
visiting all the nodes one by one. The following
iterator will be handy.

class ChainIterator {

public:

T* Initialize(const Chain<T>& c){

location = c.first;

if (location) return &location->data;

return 0;

}

T* Next(){

if (!location) return 0;

location = location->link;

if (location) return &location->data;

return 0;

}

private:

ChainNode<T> *location;

};

23

Then, when printing out elements, instead of

using the following Θ(n2) segment:

int len=X.length();

for(int i=1; i<=len; i++){

X.Find(i, x);

cout << x << ’ ’;

}

we can use the following Θ(n) segment:

int *x;

ChainIterator<int> c;

x=c.Initialize(X);

while(x){

cout << *x << ’ ’;

x=c.Next();

}

cout << endl;

24

Circular list

Some application might be simpler, or run faster,

by representing a list as a circular list, and/or

adding a Head node, at the front.

25

An example

Below gives code for search in a circular list.

template<class T>

int CircularList<T>::Search(const T& x) const{

ChainNode<T> *current = first->link;

int index = 1; // index of current

first->data = x; // put x in head node

while (current->data != x) {

current = current->link);

index++;

}

return ((current == first) ? 0 : index);

}

It does not run faster, but it is simpler.

26

Comparisons with arrays

First of all, we consider the space factor. As

array must occupy adjacent locations in mem-

ory, the request for an array of 10,000 elements

might fail, even there are 40,000 integer-sized

locations available. On the other hand, the

same request for that many linked nodes is

more likely to be successful.

Assume that a pointer needs 4 bytes, an inte-

ger 2 bytes and each element d bytes. As we

double the size of an array when needed, we

assume the average size of any array to store

N elements is 3
2N. Thus, the array implementa-

tion needs 3
2Nd+8 bytes. In contrast, a linked

list version needs N(d+4)+4 bytes. This will

lead to the conclusion that when d ≥ 8, an ar-

ray will use more space; when d < 8, an linked

list uses more space;

27

The different implementation also has some

impact on the running time. For example, in

defining the operation of InsertBefore, if an

array is used, some elements must be moved

first, thus it needs O(n) time; while it only

takes O(1) time to do it if a linked list is used.

On the other hand, the destructor uses less

time in an array than a linked list.

Finally, comprehensibility is also an issue. Ar-

ray implementation is much easier to under-

stand than the linked list implementation.

These consideration leads to the question of

“what do you mean by ‘best’?” It depends on

what criterion must be regarded as the most

important one. We are often faced with trade-

offs.

28

Homework

3.5. Extend the Chain class to include func-

tions to convert a LinearList to Chain and vice

versa.

3.7. Write a function Alternate to create a

new chain C, given two chains A and B, begin-

ning with the first element of A, followed by

the first one in B, etc..

3.8. Write a function Split that does the op-

posite to the above, but B is to collect all the

odd positioned elements of A, while C collects

the even positioned ones.

For all the above homework, you need to sub-

mit source code and sample output.

29

Indirect addressing

This approach combines the formula-based ap-

proach and that of the linked representation.

As a result, we can not only get access to el-

ements in Θ(1) times, but also have the stor-

age flexibility, elements will not be physically

moved during insertion and/or deletion.

In indirect addressing, we use a table of point-

ers to get access to a list of elements, as shown

in the following figure.

30

The indirect addressing class

The following declares the indirect addressing

structure, when the elements are stored dy-

namically.

class IndirectList {

public:

IndirectList(int MaxListSize = 10);

~IndirectList();

bool IsEmpty() const {return length == 0;}

int Length() const {return length;}

bool Find(int k, T& x) const;

int Search(const T& x) const;

IndirectList<T>& Delete(int k, T& x);

IndirectList<T>& Insert(int k, const T& x);

void Output(ostream& out) const;

private:

T **table; // 1D array of T pointers

int length, MaxSize;

};

31

To create an indirect addressing list of no more

than 20 integers, we can use the following code

IndirectList<int> x(20);

Below shows the constructor and/or destruc-

tor.

IndirectList<T>::IndirectList(int MaxListSize)

{

MaxSize = MaxListSize;

table = new T *[MaxSize];

length = 0;

}

IndirectList<T>::~IndirectList(){

for (int i = 0; i < length; i++)

delete table[i];

delete [] table;

}

32

Other operations

Find(x, k) simply returns the element pointed

by table[k-1]. Search(x) simply goes through

table[0], table[1],...,table[MaxSize-1] to look

for x. Below gives the code for Delete(x, k).

IndirectList<T>& IndirectList<T>::

Delete(int k, T& x){

if (Find(k, x)) {

for (int i = k; i < length; i++)

table[i-1] = table[i];

length--;

return *this;

}

else throw OutOfBounds();

return *this;

}

33

Simulating pointers

In most applications, we can implement the de-

sired linked and indirect addressing representa-

tion using dynamic allocation and C++ point-

ers. But, sometimes, it is more convienient

and efficient to use an array of nodes and sim-

ulate pointers by integers that are indexes into

this array.

Assume that we use an array, each element of

which has two parts, data and link. Now, if

a chain c consists of nodes 10, 5 and 25. We

shall have c=10, node[9].link=4, node[4].link

= 24 and node[24].link=-1.

34

The SimNode class

class SimNode {

friend SimSpace<T>;

friend SimChain<T>;

private:

T data;

int link;

};

class SimSpace {

friend SimChain<T>;

public:

SimSpace(int MaxSpaceSize = 100);

~SimSpace() {delete [] node;}

int Allocate(); // allocate a node

void Deallocate(int& i); // deallocate node i

private:

int NumberOfNodes, first;

SimNode<T> *node; // array of nodes

};

35

SimSpace operations

We first need to implement the constructor,

which simply initialize the available space list,

by applying for enough space, hooking up all

the nodes, and returning 0 as the head address.

SimSpace<T>::SimSpace(int MaxSpaceSize){

NumberOfNodes = MaxSpaceSize;

node = new SimNode<T> [NumberOfNodes];

for (int i = 0; i < NumberOfNodes-1; i++)

node[i].link = i+1;

node[NumberOfNodes-1].link = -1;

first = 0;

}

36

Allocate and deallocate

The key operations are how to get a node as-

signed, and send it back when it is no longer

needed.

int SimSpace<T>::Allocate(){

if (first == -1) throw NoMem();

int i = first;

first = node[i].link;

return i;

}

void SimSpace<T>::Deallocate(int& i){

node[i].link = first;

first = i;

i = -1;

}

37

Comparisons

The following table compares the asymptotic
complexities of various operations on a linear
list, using various data representation mecha-
nisms, where s and n refer to the size of the
element and the length of the list.

Methods Find(k) Delete(k) Insert(k)

Formula Θ(1) O((n − k)s) O((n − k)s)
Linked O(k) O(k) O(k + s)
Indirect Θ(1) O(n − k) O(n − k)

In terms of space, indirect addressing uses about
the same space as does a linked list. Both
of them use more space than a formula-based
mechanism.

When the lists are ordered, then with both
formula-based and indirect addressing, we can
carry out a search in Θ(logn). Otherwise, such
a search has to take O(n).

38

Bin sort

Assume we have maintained a list of students,

together with their test scores. Assume that

their average scores are integers between 0 and

100, we want to sort them according to their

average scores. It will take O(n2) to do that,

if we use some of the methods we have leant

in the previous chapter.

A faster way in this case is to use bin sort,

in which we prepare 101 bins, each of which

is labeled with a score. We then put all the

nodes into bins according to their scores. We

finally create a sorted list by combining those

bins.

39

An example

In this example, since there are only 6 different

scores, we use just 6 bins.

40

Operation overloading

In order to properly compare nodes, we have
to overload such operations as 6= .

class Node {

friend ostream& operator<<

(ostream&, const Node &);

friend void BinSort(Chain<Node>&, int);

friend void main();

public:

int operator !=(Node x) const

{return (score != x.score

|| name[0] != x.name[0]);}

operator int() const {return score;}

private:

int score;

char *name;

};

ostream& operator<<(ostream& out, const Node& x)

{out << x.score << ’ ’ << x.name[0]

<< ’ ’; return out;}

41

The bin sort

If the input list is of chain type, we can imple-

ment bin sort by successively deleting nodes

from the chain, adding it into corresponding

bins, and then concatenate all the bins.

void BinSort(Chain<Node>& X, int range){

int len = X.Length();

Node x;

Chain<Node> *bin;

bin = new Chain<Node> [range + 1];

for (int i = 1; i <= len; i++) {

X.Delete(1,x);

bin[x.score].Insert(0,x);}

for (int j = range; j >= 0; j--)

while (!bin[j].IsEmpty()) {

bin[j].Delete(1,x);

X.Insert(0,x);}

delete [] bin;

}

42

A couple of issues

1. Notice that does not change the relative

order of nodes that have the same score. Such

a sort is called a stable sort.

2. For the first for loop, each node has to

be deleted and inserted into a bin, there are

Θ(n) work. For the second for loop, there

are Θ(range) tests in the while loop, when the

test succeeds, it will delete nodes and put them

into the chain, there are exactly Θ(n) such

nodes. Hence, the total time complexity is

Θ(n + range).

3. We can also include bin sort into the Chain

class so that we can use the same physical

nodes no matter they are in bins or they are in

the original chain. We also can eliminate the

need for all the new and delete invocations.

43

Radix sort

The bin sort method may be extended further

to radix sort, which can sort, in Θ(n) time, n

integers in the range 0 through nc − 1, where

c is a constant. Notice that if we were to di-

rectly apply bin sort on this range, the time

complexity would be Θ(nc).

Assume that we want to sort 10 numbers in

the range 0 through 999. If we directly apply

bin sort on them, we have to take 1000 steps

to initialize the 1000 bins, 10 steps to put them

into the bins, and another 1000 steps to collect

them; 2010 steps in total.

Another approach is to apply bin sort three

times on their digits, from the rightmost to

the leftmost.

44

More specifically, we go through the following
steps:
1) Use bin sort to sort the 10 numbers by their
least significant digit. As a result, the resulted
sequence is sorted by the rightmost digit.

2) We apply bin sort again on the second digit.
As a result, the sequence will be sorted by the
second digit. Moreover, since bin sort is stable,
among all the numbers that have the same
second digit, they remain sorted by the third
digit. Hence, now the numbers are sorted by
the last two digits.

3) We finally bin sort on the first digit. Again,
because of the stability, the numbers are com-
pletely sorted.

In terms of time complexity, since range=10
in all cases. The total complexity will not
be more than 100. More generally, it will be
Θ(cn).

45

An example

Below gives a concrete example of radix sort.

46

Equivalence relations

A relation is defined on a set S if for every pair
of elements (a, b), a, b ∈ S, aRb is either true
or false. If aRb is ture, then we say that a is
related to b

An equivalence relation is a relation R that sat-

isfies the following three properties:

1. Reflexive:

aRb, for all a ∈ S.

2. symmetric:

aRb if only if bRa.

3. Transitive:

aRb and bRc implies that aRc.

47

Examples

The ≤ relation is not equivalent, as it is not

symmetric. Electrical connectivity is equiva-

lent. The relation satisfied by any pair of cities

if they are located in the same country is equiv-

alent, as well.

Assume n = 14 and R = {(1,11), (7,11), (2,12),

(12,8), (11,12),(3,13), (4,13),(13,14), (14,9),

(5,14), (6,10)}. All the pairs in the form of

(a, a) have been omitted because of the reflex-

ivity. Also, since (1,11) ∈ R, by symmetry,

(11,1) ∈ R, as well. Other omitted pairs can

be obtained via the transitivity, e.g., since both

(7,11) and (11,12) are in R, so should (7,12).

48

We say a and b are equivalent,iff (a, b) ∈ R. An

equivalent class is the maximal set of equiva-

lent elements. For example, in the above ex-

ample, since 1 and 11, 11 and 12 are equiva-

lent, elements 1, 11, and 12 are equivalent to

each other. But, they don’t form an equivalent

class, since they are also equivalent to 7.

Actually, R defines three equivalent classes:

{1,2,7,8,11}, {3,4,5,8,13,14}, and {6,10}.

Given an equivalence relation R and n,, the

equivalence class problem is to determine the

equivalent classes, i.e., given any two elements,

whether or not they are related.

49

On line equivalent class problem

In this problem, we begin with n elements, each

in a separate equivalent class. We can find

out all the equivalent classes by carrying out

a series of operations: 1) combine(a, b) is to

combine the equivalent classes that contain a

and b into a single class; and 2) Find(e) is

to determine the class that contains e. The

purpose for the latter operation is to decide if

two elements belong to the same class.

Moreover, the combine(a, b) operation can be

done in terms of Find and Union, which takes

two classes and makes one:

i=Find(a); j=Find(b);

if(i !=j) Union(i, j);

50

What will we do?

With the help of Union and Find, we can add

new relations to R. More specifically, before

we add new relation (a, b), we use Find(a, b)

to check if (a, b) ∈ R. If it is the case, then

we don’t need to add it to R, Otherwise, we

will apply Union(a, b) to merge the two classes

into one.

In this section, we will study the online ver-

sion of the equivalent class problem, and de-

velop some simple solutions. This problem has

immediate application. For example, an elec-

tronic circuit consists of components, pins and

wires. Two pins are electronically equivalent,

iff they are either connected by a wire, or there

is a sequence of wires that connect them. a

net is a maximal set of electronically equivalent

pins.

51

A simple solution

We use trees to represent equivalent classes,

which is identified by its root. Actually, we

can use an array, S, and let S[i] be the root

of the tree that currently contains e. Finally,

S[i]==0 iff i is the root of a tree.

We immediately have the following functions:

S = new int [n + 1];

void Initialize(int n){

for (int e = 1; e <= n; e++)

S[e] = 0;

}

52

Wrapping up

int Find(int e){

int temp=e;

while (S[temp]<>0)

temp=S[temp];

return temp;

}

void Union(int i, int j){

int r1=Find(i);

int r2=Find(j);

s[r2]=r1;

}

It is easy to see that all the functions take

O(n).

53

Possible improvements

One idea is to keep all the elements of the

same equivalent class in a linked list. This

saves time for the updating. But, this by itself

won’t cut the asymptotic time.

Another idea is that we also keep the size of

every equivalent class, and when performing

unions, we change the name of the smaller

equivalence class to the larger, then the total

time spent for n − 1 merges is O(nlog(n)).

54

