Project 6: The Height of a Binary Tree

1 Background

In Chapter 12, we discussed the height of a binary tree. In the extreme case, it can be quite high, when it goes up (comes down?) to a linear list.

It is stated, in Theorem 12.4, that the expected height of a randomly built BST with \(n \) keys is \(O(\log n) \). We now want to confirm/demonstrate this result with some experiments, similar to what we did in Projects 2 and 3.

This project, on a linked structure based tree implementation, and the last two projects, will also set the stage for the next one, MoAP, the mother of all the projects.

2 What to do?

2.1 Get familiar with the binary tree structure

To complete this project, and prepare for the next one, you have to stick with the following specification.

To start, a node in a binary tree looks like the following, in terms of Java:

```java
public class BinaryTreeNode {
    int key;
    BinaryTreeNode left, right, parent;

    public BinaryTreeNode(int key){
        this.key=key;
        left=right=parent=null;
    }
}
```

And a binary tree looks like the following:

```java
public class BinaryTree {
    BinaryTreeNode root;

    public BinaryTree(){
        root=null;
    }
}
```
You then have to implement at least the **Insertion** operation, either non-recursively (Page 17 of the BST notes), or recursively (Exercise 12.3-1).

You need a method, with its signature being `int treeHeight(BinaryTreeNode root)`, that gives the height of any tree with its top node referred by the `root` parameter.

Question: How to call such a function, given the above declaration of a binary tree?

The gist of this algorithm is the following: the height of a binary tree is one plus the maximum of the heights of its left and right subtrees.

Question: If you decide to do it recursively, how do you deal with the base case, i.e., what is the height of an empty binary tree?

You might want to play with a few real binary trees to come up with a correct base case to complete a recursive definition of the `treeHeight` function.

Incidentally, it is also an example of PostOrder traversal of a binary tree, since it has to find the height of each and every node before finding out the height of the whole tree.

2.2 What to do?

1. Generate a random permutation of n distinct integers, $n \in [10, 50, 100, 200, 500, 1000]$.

2. Insert n nodes containing the respective keys generated in the previous step into an initially empty binary search tree, *according to the random order*.

3. Use the `treeHeight` method you wrote in Sec. 2.1 to find out the height of this just generated tree. For every n, repeat this experiment for at least n different lists of numbers \(^1\) to find out the average of the measured heights for that specific value of n.

4. For each value of n, compare the just obtained average height with the theoretical figure of $\lceil \log_2(n + 1) \rceil$ (Cf. Page 27 of the BTS notes)

3 What to hand in?

Email me the source code of your program, together with a lab report \(^2\) on the output, containing a table showing, for each $n \in [10, 50, 100, 200, 500, 1000]$, the experimental data and the theoretical data, as well as their comparison.

\(^1\)Keep in mind that there are $n!$ such lists. For example, when $n = 10$, there are 3,628,800 such lists.

\(^2\)You should include a spreadsheet, which shows the theoretical result and the practical data, and their comparison. You should also send in a chart, showing the comparison of these two “curves”.

2