Chapter 3
Growth of Functions and Company

As we just went through, for the sorting problem, once the input size, n, becomes large enough, mergesort, with its $\Theta(n \log n)$ running time, beats insertion sort, with its worst-case running time being $\Theta(n^2)$.

Question: What does ‘Θ’ mean?

The notion of “the order of functions” captures the efficiency of algorithms, and also provides a way of comparing the relative performance of different algorithms that solve the same problem.

We went though this stuff in *CS 2010*, and will dig out much more details in this quite mathy (messy!) chapter, and bring up even more mathy stuff to serve a later purpose.
Asymptotic behavior

When we look at the running time of those algorithms when input size grows larger, we are studying the asymptotic behavior of those algorithms.

In other words, we are concerned with how the running time of an algorithm goes up with the size of the input going up without a bound. Usually, the most asymptotically efficient algorithm is the best choice among its peers.

The asymptotic behavior shows the long term behavior, but not what this algorithm does for a specific input size. This behavior is important when we consider the whole ninety feet.

For example, when we buy stock, we don’t care about its performance on a particular day, but that in a long term. 😊
Which one to buy?

The following chart shows the performance comparison of the some stocks, over the last several years.

We should not pay attention to the stock price on a certain date, e.g., last year when S&P 500 dropped 18% 😞, but to the long-term growth when we retire 😊.

When comparing algorithms, we do the same.
Asymptotic notations

To study the asymptotic behaviors of algorithms, we need some special notations, such as the ‘Θ’ notation that we have already seen.

These notations are defined in terms of functions whose domains are the set of natural numbers, which represent the sizes of algorithm input.

For example, when we use $T(n)$ to describe the worst-case running time of the Insertion sort algorithm, we may say $T(n) = \Theta(n^2)$, where n stands for the input size.

Question: What does it exactly mean?

Let’s define the notations for the exact bound (Θ), the upper bound (O), and the lower bound (Ω) of a function.
The ‘Θ’ notation

For a given function $g(n)$, by $\Theta(g(n))$, we mean a set of functions, satisfying the following condition:

$$\Theta(g(n)) = \{f(n) : \text{for some positive constant } c_1, c_2, \text{ and } n_0 \text{ such that for all } n \geq n_0, 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)\}.$$

We say that $g(n)$ is an asymptotically tight bound for $f(n)$, since for large enough $n \geq n_0$, $g(n)$ can be identified with $f(n)$ within a constant factor.
An example

To show that $\frac{1}{2}n^2 - 3n = \Theta(n^2)$, by definition, we have to find positive integers c_1, c_2 and n_0 such that for all $n \geq n_0 > 0$,
\[
c_1 n^2 \leq \frac{1}{2}n^2 - 3n \leq c_2 n^2.
\]

Question: How could we find these three musketeers? 😊

To find such constants c_1, c_2 and n_0, we start by dividing both sides by n^2 to obtain
\[
c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2.
\]

For $n > 0$, $-\frac{3}{n} < 0$. If we let $c_2 \geq \frac{1}{2}$, we will have
\[
\frac{1}{2} - \frac{3}{n} \leq \frac{1}{2} \leq c_2.
\]

Why don’t we pick $c_2 = \frac{1}{2}$?

One is done, two more to go... 😊
On the other hand, for $n \geq 7$, i.e., $\frac{1}{n} \leq \frac{1}{7}$, thus, $\frac{-1}{n} \geq -\frac{1}{7}$, we have
\[
\frac{1}{2} \frac{3}{7} \geq \frac{1}{2} - \frac{3}{7} = \frac{1 \times 7 - 2 \times 3}{14} = \frac{1}{14}.
\]
Thus, if we let $c_1 \leq \frac{1}{14}$, we will have, for $n \geq 7$,
\[
\frac{1}{2} \frac{3}{n} \geq \frac{1}{14} \geq c_1.
\]

Combine the above together, for all $n \geq 7$ (> 0), $c_1 \leq \frac{1}{14}$, and $c_2 \geq \frac{1}{2}$,
\[
c_1 \leq \frac{1}{14} \leq \frac{1}{2} - \frac{3}{n} \leq \frac{1}{2} \leq c_2,
\]
namely,
\[
c_1 n^2 \leq \frac{1}{2} n^2 - 3n \leq c_2 n^2.
\]

Setting $n_0 = \max\{0, 7\} = 7$, $c_1 = \frac{1}{14}$, and $c_2 = \frac{1}{2}$, by definition, $\frac{1}{2} n^2 - 3n = \Theta(n^2)$. 😊

Question: Could we always find them?
A counter example

We can show that $6n^3 \neq \Theta(n^2)$, with proof by contradiction.

Just assume $6n^3 = \Theta(n^2)$, i.e., for some positive integers c_1, c_2, and n_0, for all $n \geq n_0 > 0$,

$$c_1n^2 \leq 6n^3 \leq c_2n^2.$$

Then, we have that for all $n \geq n_0 > 0$,

$$n^3 \leq \frac{c_2}{6}n^2, \text{ or } n \leq \frac{c_2}{6}.$$

But, it is clear that, for all $n > \max\{n_0, \frac{c_2}{6}\}$, $n > \frac{c_2}{6}$, contradicting the fact that $n \leq \frac{c_2}{6}$.

By the principle of proof by contradiction, the original assumption that $6n^3 = \Theta(n^2)$ must be false, i.e., $6n^3 \neq \Theta(n^2)$.

Homework: Exercises 3.1-1 (you need to understand the “max” function).
Why can they be ignored?

We use such notation as ‘Θ’ to ignore lower order terms and the coefficients of the highest order term.

1. The lower-order term in \(f(n) \) can be ignored since they are insignificant for larger \(n \).

Let \(f(n) = cg(n) + dh(n) \), where the order of \(h(n) \) is strictly lower than that of \(g(n) \) (Thus, for all \(n \geq n_0 \), \(h(n) < c_3 g(n) \)).

To show \(f(n) = \Theta(g(n)) \), we have to construct the following inequality, for all \(n \geq n_0 \),

\[
c_1 g(n) \leq f(n)(= cg(n) + dh(n)) \leq c_2 g(n).
\]

We only need to let \(c_1 = c \) and \(c_2 = c + c_3 d \), for some \(c_3 \), where \(d \geq 0 \); or \(c_1 = c - c_3 d \) and \(c_2 = c \), otherwise, when.

\[
(c_1 - dc_3)g(n) \leq f(n)(= cg(n) + dh(n)) \leq c_2 g(n).
\]
2. The coefficient of the highest order in \(f(n) \) can also be ignored since it will be absorbed by the constants.

Indeed, if we can find \(c_1, c_2 \) and \(n_0 \) for the following inequality, for all \(n \geq n_0 \),

\[
c_1 g(n) \leq cf(n) \leq c_2 g(n),
\]

then, we can surely find \(c_3, c_4 \) for the following inequality, for all \(n \geq n_0 \),

\[
c_3 g(n) \leq f(n) \leq c_4 g(n).
\]

It is clear that \(c_3 = c_1 / c \), and \(c_4 = c_2 / c \).

As a result,

\[
 cf(n) = \Theta(g(n)) \equiv f(n) = \Theta(g(n)).
\]

Thus, we can drop all the lower-order terms and take off the coefficient of the highest term when applying the ‘\(\Theta \)’ notation.

For example, \(c_1 n + c_2 n \log n = \Theta(n \log n) \).
An example

Consider any quadratic function

\[f(n) = an^2 + bn + c, \]

where \(a(> 0), b \) and \(c \) are constants.

Throwing out the lower-order terms, and ignoring the coefficient of the term \(n^2 \), we come to the conclusion that

\[an^2 + bn + c = \Theta(n^2). \]

More formally, we may prove that if we take \(c_1 = a/4, c_2 = 7a/4 \) and \(n_0 = 2 \max\{|b|/a, \sqrt{|c|}/a\} \), then for all \(n \geq n_0 \),

\[0 \leq c_1 n^2 \leq an^2 + bn + c \leq c_2 n^2. \]

In general, for any polynomial, \(p_d(n), d \geq 0, \)

\[p_d(n) = \sum_{i=0}^{d} a_i n^i, \]

we have that \(p_d(n) = \Theta(n^d). \)

In particular, \(c (= p_0(n)) = \Theta(n^0) = \Theta(1). \)
The ‘O’ notation

The ‘Θ’ notation provides an asymptotic *tight bound*.

When we only need the *upper bound*, we use the ‘O’ notation.

For a given function $g(n)$, by $O(g(n))$, we mean the following set of functions.

$$O(g(n)) = \{ f(n) : \text{for some positive constant } c, \text{ and } n_0 \text{ such that for all } n \geq n_0, \ 0 \leq f(n) \leq cg(n) \}.$$

Notice that $3n^2 - 2 \in O(n^2)$. The latter also includes, e.g., $5n - 17$ and those “below” n^2.
Difference between ‘Θ’ and ‘O’

We note that ‘Θ’ is a stronger notation than ‘O’, particularly, $f(n) = \Theta(g(n))$ implies that $f(n) = O(g(n))$. Thus, since, $an^2 + bn + c = \Theta(n^2)$, we immediately have that $an^2 + bn + c = O(n^2)$.

The ‘O’ notation is not a tight one, e.g., any linear function $an + b = O(n^2)$, just taking $c = a + b$, and $n_0 = 1$, since for all $n \geq 1$, $(an + b) \leq (a + b)n^2$. But, $an + b \neq \Theta(n^2)$. 😊 (?)

Just assume $an + b = \Theta(n^2)$. Then, by definition, for some c_1, c_2, and n_0, for all $n \geq n_0$,

$$c_1n^2 \leq an + b \leq c_2n^2.$$

In particular, $c_1n \leq a + \frac{b}{n} \leq a + 1$, for $n \geq b$.

Now, we have for all $n \geq b$, $n \leq \frac{a+1}{c_1}$, which contradicts the fact that, for all $n > \max\{\frac{a+1}{c_1}, b\}$, $n > \frac{a+1}{c_1}$.

Thus, the assumption must be incorrect. 😊
‘O’ means the worst possible...

Since the ‘O’ notation provides an upper bound, when we use it to describe the worst-case running time of an algorithm we have a bound for every input: *Nothing would be worse, but something could be better.*

For example, when we say the worst-case running time of the insertion sort is $O(n^2)$, we mean that, for every input, its worst running time would be n^2.

But it could be better, e.g., when the list is pre-sorted, it takes just $n - 1$.

The lowest temperature at Plymouth this week is expected to be $20^\circ F$ between Monday, February 20, through Friday, February 24, 2023 ..., but it is expected to hit $49^\circ F$ today, February 20. 😊
We might do this, too

When we use the ‘Θ’ notation to describe the worst-case running time of an algorithm, it only applies to the worst case, but not to every case. Thus, it does not cover every input.

When we say the worst-case running time of the insertion sort is Θ(n^2), we only mean that for the worst case, e.g., for a completely reversed input, it will take that long, which is not true for the other cases.

For example, for an already sorted list, it takes Θ(n) time.

This tells us that, to provide more information, we need to provide a tighter bound, and also distinguish different cases: The best, worst, and the average case, as we will see later.
The ‘Ω’ notation

Similarly, when we only need the lower bound, we use the ‘Ω’ notation. For a given function \(g(n) \), we mean the following set of functions, denoted by ‘\(\Omega(g(n)) \)’.

\[
\Omega(g(n)) = \{ f(n) : \text{for some positive constant } c, \text{ and } n_0 \text{ such that for all } n \geq n_0, f(n) \geq cg(n) \geq 0 \}.
\]

We use this notation to give a lower bound of a function, within a constant factor, \(c \), in the long term: for all values \(n \) to the right of \(n_0 \), the value of \(f(n) \) does not go below \(cg(n) \).

Homework: Exercises 3.1-3 and 3.1-4.
Relating ‘Θ’, ‘O’, and ‘Ω’

Based on the definitions of the three notations, ‘Θ’, ‘O’, and ‘Ω’, we immediately have the following result.

Theorem 3.1 For any two functions \(f(n) \) and \(g(n) \), we have that \(f(n) = Θ(g(n)) \) if and only if \(f(n) = O(g(n)) \) and \(f(n) = Ω(g(n)) \).

That is, \(g(n) \) is both the lower and, the upper, bound of \(f(n) \).

For example, since, \(an^2 + bn + c = Θ(n^2) \), we immediately have that \(an^2 + bn + c = O(n^2) \), and \(an^2 + bn + c = Ω(n^2) \); and vice versa.
Where does *Insertion sort* sit?

Since the ‘Ω’ notation describes a lower bound, when we use it to describe the best-case running time of an algorithm, it takes care of every input.

For example, the best-case running time of insertion sort is \(\Omega(n) \) implies that the running time of insertion sort, when applied to any input, is \(\Omega(n) \).

To summarize, the running time of insertion sort is between \(\Omega(n) \) and \(O(n^2) \).
We don’t really care....

When we have asymptotic notations in the middle of an expression, we interpret it as something we really don’t care that much about its precision.

For example, the expression

\[2n^2 + 3n + 1 = 2n^2 + \Theta(n), \]

really means

\[2n^2 + 3n + 1 = 2n^2 + f(n), \]

and \(f(n) \) is some function in the set of \(\Theta(n) \), and we don’t care too much about its details, since it is in lower order as compared with the \(2n^2 \) term.
Why this usage?

It helps us to clean up things and get rid of inessential details.

For example, when we analyzed the behavior of merge sort, on Page 53 in the last chapter, we come up with the following recurrence equation:

\[T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n). \]

Here, with \(\Theta(n) \), we mean the number of comparisons generated by the Merge procedure. It takes at most \(n \) comparisons to merge two lists of \(n \) elements, where equality holds in the figure on Page 42, but not in the one on Page 39.

Since we are only interested in the asymptotic behavior of merge sort, we need not list all the lower-order terms exactly, we would cover both cases with the expression \(\Theta(n) \).
Two “little” notations

As we saw, the asymptotic upper bound and lower bound may or may not be tight. For example, \(\mathcal{O}(n^2) \) is a tight upper bound for \(2n^2 \), but not for \(2n \). We use the \(o \)-notation to indicate a strict upper bound.

Formally, we have that, for a given function \(g(n) \), we denote, by \(o(g(n)) \), a set of functions with their orders strictly less than that of \(g(n) \).

\[
o(g(n)) = \{ f(n) : \text{for any positive constant } c, \text{ and } n_0 \text{ such that for all } n \geq n_0, 0 \leq f(n) < cg(n) \}. \]

Notice we use “\(<\)”, but not “\(\leq\)”. Thus, \(2n = o(n^2) \), but \(2n^2 \neq o(n^2) \).
‘O’ vs. ‘o’

They are similar, with the difference being, when $f(n) = O(g(n))$, the inequality $0 \leq f(n) \leq cg(n)$ holds for some constant c; while when $f(n) = o(g(n))$, the inequality $0 \leq f(n) < cg(n)$ holds for all constants c.

Thus, when n approaches infinity, $f(n)$ becomes insignificant, namely,

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

Since the o–notation is stronger in the sense that if $f(n) = o(g(n))$ then it immediately follows that $f(n) = O(g(n))$, e.g.,

$$a < b \Rightarrow a \leq b.$$

We can use the above test to find out the O–notation of a function.

Question: How could we do that?
What is the upper bound ‘O’?

To show that \(f(n) = O(g(n)) \), we go through the following process:

1. Obtain the following result

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0,
\]

2. The above means \(f(n) = o(g(n)) \).

3. The above result implies \(f(n) = O(g(n)) \).

For example, to show \(3n - 2 = O(n^2) \), we only need to show that

\[
\lim_{n \to \infty} \frac{3n - 2}{n^2} = \lim_{n \to \infty} \frac{3}{n} = 0.
\]

Thus, \(3n - 2 = o(n^2) \), i.e., \(3n - 2 = O(n^2) \).

Now you know why you have to take Calculus.

😊
\(\Omega \text{ vs. } \omega \)

Similarly, we use the \(\omega \)–notation to indicate a lower bound that is not tight.

Formally, we have that, for a given function \(g(n) \), we denote, by \(\omega(g(n)) \), be a set of functions.

\[
\omega(g(n)) = \{ f(n) : \text{for any positive constant } c, \text{ and } n_0 \text{ such that for all } n \geq n_0, 0 \leq cg(n) < f(n) \}.
\]

Thus, \(\frac{n^2}{2} = \omega(n) \), but \(2n^2 \neq \omega(n^2) \).

Still remember L’Hospital’s rule? 😊

When \(f(n), g(n) \to 0(\infty) \) as \(n \to \infty \),

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)} ,
\]

where \(f'(n) \) stands for the derivative of \(f(n) \).
Going back to Calculus...

We can define the ω-notation in terms of the o-notation as follows: $f(n) \in \omega(g(n))$ if and only if $g(n) \in o(f(n))$.

We also have that $f(n) \in \omega(g(n))$ if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty.$$

We can use it to confirm that $f(n) = \Omega(g(n))$.

For example, since

$$\lim_{n \to \infty} \frac{\log n}{n^2} \neq \lim_{n \to \infty} \frac{1}{2n^2} = 0,$$

we immediately have that

$$\log n = o(n^2), \text{ i.e., } \log n = O(n^2)$$

and equivalently,

$$n^2 = \omega(\log n), \text{ i.e., } n^2 = \Omega(\log n).$$
Mergesort is better

We know in the previous chapter that, to sort a list of size n, insertion sort takes $\Theta(n^2)$, and mergesort takes $\Theta(n \log n)$.

Since

$$\lim_{n \to \infty} \frac{n \log n}{n^2} = \lim_{n \to \infty} \frac{\log n + 1}{2n} = \lim_{n \to \infty} \frac{1}{2n} = 0,$$

thus,

$$n \log n = o(n^2).$$

We thus may conclude that mergesort is faster than insertion sort in the long run. 😊
A little summary

1. Design various algorithms.

2. Find out the running time of these algorithms as functions of \(n \), the input size.

3. Simplify the running time to one of the “simple functions”, using mainly the \(O \), and \(\Theta \), notations

4. Compare the growth rates of those simple functions, using the following order: \(c \), \(\log^k(n) \ (k \geq 1) \) (Cf. Page 44), \(n \), \(n \log(n) \), \(n^2 \), \(n^3 \) and \(2^n \). (Cf. page 39)

5. The fastest one wins. 😊

6. Implement the winner.
Why the order in step 3?

Besides analytical work, the following picture shows why we put the time complexities of various program that way.
Why is 2^n bad? 😞

From a practical point of view, for reasonably large n, only programs of small complexity, such as $n, n \log n, n^2$ and n^3, are feasible, even if we have a computer that can execute 10^{12}, a trillion, instructions per second. Thus, each instruction takes one picosecond to run.

For example, when $n = 50$, it would take 3.17 years to execute n^{10} instructions, and 4×10^{10} years to execute 2^n instructions.

Below shows how long it takes such a computer to solve a problem with n inputs, when an algorithm has to execute $f(n)$ instructions.

<table>
<thead>
<tr>
<th>n</th>
<th>n</th>
<th>$n \log n$</th>
<th>n^2</th>
<th>n^{10}</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10ps</td>
<td>.03ns</td>
<td>.1ns</td>
<td>0.01s</td>
<td>1 µs</td>
</tr>
<tr>
<td>20</td>
<td>20ps</td>
<td>.09ns</td>
<td>40ns</td>
<td>2.84h</td>
<td>1 ms</td>
</tr>
<tr>
<td>50</td>
<td>50ps</td>
<td>.28ns</td>
<td>2.5ns</td>
<td>3.17y</td>
<td>13d</td>
</tr>
<tr>
<td>100</td>
<td>.1ns</td>
<td>.66ns</td>
<td>10ns</td>
<td>3171y</td>
<td>4×10^{13} y</td>
</tr>
<tr>
<td>10^4</td>
<td>10ns</td>
<td>.13 ns</td>
<td>100ms</td>
<td>3×10^{23} y</td>
<td>😞</td>
</tr>
<tr>
<td>10^6</td>
<td>1ms</td>
<td>20ms</td>
<td>17m</td>
<td>3×10^{43} y</td>
<td>😞</td>
</tr>
</tbody>
</table>
About the stop watch...

Besides theoretically analyzing a program, we can also measure the performance via experiments. Below shows an example in C++:

```c
#include <time.h>
#include "insort.h"

void main(void){
    int a[1000], step = 10;
    clock_t start, finish;
    for (int n = 0; n <= 1000; n += step) {
        for (int i = 0; i < n; i++)
            a[i] = n - i; // Complete reverse
            // Complete reverse
        start = clock( );
        InsertionSort(a, n);
        finish = clock( );
        cout<<n<<' '<<(finish-start)/float(CLK_TCK)
          <<endl;
    }
}
```

Question: Ready to work on Project 3?
Relationship between functions

Many of the relational properties of real numbers apply to asymptotic comparisons as well. Assume that \(f(n) \) and \(g(n) \) are asymptotically positive, we have that

1. *(Transitivity)* If \(f(n) = \oplus(g(n)) \) and \(g(n) = \oplus(h(n)) \), then \(f(n) = \oplus(h(n)) \), where \(\oplus \) can be any of the five notations.

2. *(Reflexivity)* \(f(n) = \oplus(f(n)) \), where \(\oplus \) can be either \(\Theta, O \) or \(\Omega \).

3. *(Symmetry)* \(f(n) = \Theta(g(n)) \) if and only if \(g(n) = \Theta(f(n)) \).

4. *(Transpose symmetry)* \(f(n) = O(g(n)) \) if and only if \(g(n) = \Omega(f(n)) \). The same thing exists between \(o \) and \(\omega \).
What can we talk about them?

We can also draw an analogy between the asymptotic notations and the arithmetic inequalities: O, Ω, Θ, o and ω can be interpreted as $\leq, \geq, =, <$ and $>$.

For example,

$$f(n) = O(g(n)) \approx f(n) \leq g(n).$$

We thus say that $f(n)$ is asymptotically smaller than $g(n)$ if $f(n) = O(g(n))$.

However, the nice property of trichotomy among real numbers, i.e., between any two numbers a and b, either $a < b, a = b,$ or $a > b$ does not hold for asymptotic notations.
An example

The pair of functions $n (= n^1)$ and $n^1 + \sin(n)$ can’t be compared.

For $n \in \{0, \pi, 2\pi\}$, $1 + \sin(n) = 1$; for $n \in (0, \pi)$, $1 + \sin(n) > 1$; but for $n \in (\pi, 2\pi)$, $1 + \sin(n) < 1$.

In fact, the above observations hold in general as follows: for $k \geq 0$, if $n = k\pi$, $1 + \sin(n) = 1$; for $n \in (2k\pi, (2k + 1)\pi)$, $1 + \sin(n) > 1$; but for $n \in ((2k + 1)\pi, (2k + 2)\pi)$, $1 + \sin(n) < 1$.

Thus, nothing fits, and we have to quit.
Monotonicity

A function f is called \textit{monotonically increasing} if

$$m \leq n \text{ implies } f(m) \leq f(n),$$

\textit{monotonically decreasing} if

$$m \leq n \text{ implies } f(m) \geq f(n).$$

A function f is called \textit{strictly increasing} if

$$m < n \text{ implies } f(m) < f(n).$$

Finally, A function f is called \textit{strictly decreasing} if

$$m \leq n \text{ implies } f(m) > f(n).$$

For example, the constant function $f(n) = c$ is both monotonically increasing and decreasing, but neither strictly increasing nor decreasing.

On the other hand, $f(n) = n^2$ is strictly increasing, while the function $f(n) = 100 - n$ is strictly decreasing.
For any real number \(x \), we denote the greatest integer less than or equal to \(x \) by \(\lfloor x \rfloor \), the floor of \(x \); and the least integer that is greater than or equal to \(x \) by \(\lceil x \rceil \), the ceiling of \(x \).

Thus, for all \(x \) the following is true.

\[
x - 1 < \lfloor x \rfloor \leq x \leq \lceil x \rceil < x + 1.
\]

For example, \(\lfloor 3.4 \rfloor = 3 \), but \(\lceil -3.4 \rceil = -4 \).

For any integer \(n \), \(\lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{2} \rceil = n \).

Finally, the floor function is monotonically increasing, as is the ceiling function.

Question: Are they strictly increasing?
A picture might help

It is clear that both the floor, as shown below, and the ceiling functions are monotonically increasing, but not strictly increasing.

For example, $1.1 < 1.2$, but $\lfloor 1.1 \rfloor = \lfloor 1.2 \rfloor = 1$, and incidentally, $\lceil 1.1 \rceil = \lceil 1.2 \rceil = 2$.
Modular arithmetic

For any integer a and any positive integer n, the value $a \mod n$ is the remainder of the quotient a/n:

$$a \mod n = a \% b \text{ (in Java)} = a - \left\lfloor \frac{a}{n} \right\rfloor n.$$

$$\left\lfloor \frac{a}{n} \right\rfloor = a/b \text{ (in Java)}$$

For example,

$$8 \mod 3 = 8 - \left\lfloor \frac{8}{3} \right\rfloor 3$$

$$= 8 - (8/3) \times 3 = 8 - 6 = 2.$$

If $a \mod n = b \mod n$, we write $a \equiv b \pmod{n}$ and say that a is equivalent to b, modular n.

In other words, when dividing them using n, they end up with the same remainder, e.g., $8 \equiv 14 \pmod{3}$.
Polynomials

Given a non-negative integer \(d \), a polynomial in \(n \) of degree \(d \) is a function \(p_d(n) \) of the form

\[
p_d(n) = \sum_{i=0}^{d} a_i n^i,
\]

where \(a_i \)s, \(i \in [0, d] \), \(a_d \neq 0 \), are the coefficients of \(p \).

For example, \(p_2(n) = \frac{1}{2}n^2 - \frac{1}{2}n \).

A polynomial \(p_d(n) \) is asymptotically positive if and only if \(a_d > 0 \), when \(p_d(n) = \Theta(n^d) \).

For any real constant \(a \leq 0 \), the function \(n^a \) is monotonically decreasing.

Finally, we say that \(f(n) \) is polynomially bounded if for some constant \(k \),

\[
f(n) = O(n^k).
\]
Exponentials

For all real $a > 0, m,$ and n, the following identities always hold:

\[
\begin{align*}
 a^0 &= 1, \\
 a^1 &= a, \\
 a^{-1} &= \frac{1}{a}, \\
 (a^m)^n &= a^{mn}, \\
 a^{mn} &= a^{nm}, \\
 a^m a^n &= a^{m+n}.
\end{align*}
\]

For all n and $a \geq 1$, the function a^n is monotonically increasing in n.

Since for all real constants $a(>1)$ and b,

\[
\lim_{n \to \infty} \frac{n^b}{a^n} = \lim_{n \to \infty} \frac{b n^{b-1}}{a^n \log a} = \cdots = \lim_{n \to \infty} \frac{b!}{a^n \log^b a} = 0,
\]

we have that $n^b = O(a^n)$.

Thus, any exponential function with a base strictly larger than 1 grows faster than any polynomial function.
exponential function

Using $e = (2.71828\cdots)$ we have that, for all real x,

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots = \sum_{i=0}^{\infty} \frac{x^i}{i!}.$$

In particular, we have that, for all real x,

$$e^x \geq 1 + x,$$

where the equality holds when $x = 0$.

We also have that, for all real x,

$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x.$$

It looks like this:
A little consequence

A problem is considered “solved”, or “easy”, if we can come up with a polynomial algorithm. And if we do find such a one, we often can further improve it to something with a growth rate of n^k, $k \leq 3$.

On the other hand, there is a large class of problems, so-called NP-complete problems, including the traveling salesman problem, as discussed on Page 26 of Chapter 0 notes, for which no known polynomial algorithms exist; but no one has proved that such an algorithm could not be found.

They are conceptually challenging, but practically important: Most of the problems out of practice are NP-complete.

We will discuss several such problems at the end of this course.
Logarithm is the best...

Simply put, \(a = b^x \) iff \(x = \log_b a \).

For all real \(a > 0, b > 0, c > 0 \) and \(n \), the following identities always hold:

\[
\begin{align*}
 a & = b^{\log_b a}, \\
 \log_c(ab) & = \log_c a + \log_c b, \\
 \log_c(a/b) & = \log_c a - \log_c b, \\
 \log_b(a^n) & = n \log_b a, \\
 \log_b \left(\frac{1}{a} \right) & = -\log_b a, \\
 \log_b a & = \frac{\log_c a}{\log_c b}, \text{ (Who cares about base?)} \\
 \log_b a & = \frac{1}{\log_a b}, \text{ and, } a^{\log_b c} = c^{\log_b a} \text{ (?).}
\end{align*}
\]

It looks like this.
A bit proof

We just saw that

\[a^{\log_b c} = c^{\log_b a}. \]

We can prove this equality in at least two ways:

1. Let \(x = \log_b c \) and let \(y = \log_b a \), we have that \(c = b^x \), and \(a = b^y \). Then

\[a^{\log_b c} = a^x = (b^y)^x = b^{yx} = b^{xy} \]

\[= (b^x)^y = c^y = c^{\log_b a}. \]

2. Let \(x = \log_b c \). Thus, \(c = b^x \). Thus

\[c^{\log_b a} = (b^x)^{\log_b a} = b^{x \log_b a} \]

\[= b^{x \log_b a} \text{ by definition} \]

\[= a^x = a^{\log_b c}. \]

Just did 3.2-2 for you.😊
Logarithm is really slow.

We say that \(f(n) \) is polylogarithmically bounded if for some constant \(k \),

\[
f(n) = O(\ln^k n),
\]

where \(\ln n \equiv \log_e(n) \). (Cf. Page 56 of the textbook)

Since for all real constants \(b \geq 1 \), and \(k \geq 1 \),

\[
\lim_{n \to \infty} \frac{\ln^k n}{n^b} = \lim_{n \to \infty} \frac{k \ln^{k-1} n}{bn^b} = \cdots = \lim_{n \to \infty} \frac{k!}{b^n n^b} = 0,
\]

we have that \(\ln^k n = o(n^b) \). By the same token, for any \(c \), \(\log_c^k n = o(n^b) \).

Thus, any positive polynomial function grows faster than any polylogarithmic function.

Combined with a result obtained in Page 39, we have \(\log_c^k n \prec n^b \prec 2^n \), thus establishing Step 3 of the process, as described on Page 27.
An example: Binary search

Given an integer \(x \) and a list of pre-sorted integers \(a_1, a_2, \ldots, a_n \), already kept in memory, find \(i \) such that \(a_i = x \), or return \(i = 0 \) if \(x \) is not in the input.

This problem can be solved by using binary search. Exercise 2.1-3 asks for a solution when they are not pre-sorted.

```c
int BinarySearch(int A, int x, int n)
 // Return position if found; -1 otherwise.
    int left = 1; int right = n;
    while (left <= right) {
        int middle = (left + right)/2;
        if (x == A[middle]) return middle;
        if (x > A[middle]) left = middle + 1;
        else right = middle - 1;
    }
    return -1; // x not found
}
```

Question: Have you seen this earlier?
I want to see...

Assume we try to look for \(x=10 \) in an array of size \(n=8 \).

When it starts, left=1, right=8, so \(\text{middle}=\left\lfloor \frac{1+8}{2} \right\rfloor = 4 \).

\[
\begin{array}{cccccccc}
1 & 4 & 5 & 7 & 10 & 12 & 14 & 22 \\
\end{array}
\]

Since \(10 > 7 \), left is set to 5, and right stays at 8, we jump back into the loop.

As left=5, right=8, middle is set to \(\left\lfloor \frac{5+8}{2} \right\rfloor = 6 \).

\[
\begin{array}{cccccccc}
1 & 4 & 5 & 7 & 10 & 12 & 14 & 22 \\
\end{array}
\]

Now, \(12 > 10 \), we set right to 5. As left=5=right, and the element in position 5 is 10, we got it, and return 5 as the output.
How does it work?

The gist is that if $A \equiv x$ is in $A[left..right]$ then $B \equiv$ either

- $x = A[middle]$, when the search succeeds; or

- if $x > A[middle]$, then x is in $A[middle+1, right]$; or

- x is in $A[left, middle-1]$.

After repetitive cuts, either we find x or we will end up with an empty segment ($\neg B$). In the latter case, x could not be in the original list ($\neg A$), when the search fails.

The logic is simply the following:

$$A \rightarrow B \equiv \neg B \rightarrow \neg A.$$
Algorithm analysis

We first show that what’s left after each repetition is strictly less than half of the size that it starts with.

Let $l = m$, $h = n$. The size of the original list is $n - m + 1$, and $\text{mid} = (l + h)/2$.

Case (i): $m + n = 2k$, i.e., $\text{mid} = k$.

- size of the lower part:

$$\text{size}([l, \text{mid} - 1]) = \text{mid} - 1 - l + 1 = k - m.$$

As, $2(k - m) = m + n - 2m$

$$= n - m < n - m + 1,$$

$$|l, \text{mid} - 1| < \frac{n - m + 1}{2}$$

$$= \frac{1}{2}|l, h|.$$
• size of the upper part: Similarly, we can find out that

\[|\text{mid} + 1, h| \leq \frac{1}{2}|l, h|. \]

Case (ii): \(m + n = 2k + 1 \), so \(\text{mid} = k \). Similar analysis shows the same result.

Therefore, what’s left is always no more than half of the original list.

Thus, the maximal sizes of a list that we have to work on after each loop are as follows: \(\frac{n}{2}, \frac{n}{4}, \ldots, \frac{n}{2^k}, \ldots, 1 \).

Since \(\frac{n}{2^k} \geq 1, k \), the number of loops, cannot be more than \(\log_2(n) \).

As the computation within each loop can be done with \(O(1) \) time, the total time of the binary search is in \(O(\log_2(n)) \).
Factorial is pretty bad...

The well-known factorial function is defined as follows:

\[1! = 1, \]
\[n! = n \times (n - 1)!. \]

Thus, \(n! = 1 \times 2 \times \cdots n. \)

It is immediate that \(n! \leq n^n. \)

The following Stirling’s approximation provides a much tighter bound:

\[n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \left(1 + \Theta \left(\frac{1}{n} \right) \right). \]

It looks like this:
A little justification

\[\log n! = \sum_{j=1}^{n} \log j \approx \int_{1}^{n} \log x \, dx \]

\[= [x \log x - x]_1^n \approx n \log \left(\frac{n}{e} \right) \]

\[= \log \left(\frac{n}{e} \right)^n = \log n^n e^{-n}. \]

Thus, we have \(n! \approx n^n e^{-n} \). Indeed

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\frac{n!}{n^n e^{-n}} \sqrt{2\pi n})</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.084437</td>
<td>1.008365</td>
<td>1.000833</td>
<td>1.000083</td>
<td></td>
</tr>
</tbody>
</table>

Based on this result, we can prove that

\[n! = o(n^n), \]

\[n! = \omega(2^n), \]

\[\log(n!) = \Theta(n \log n). \]

Hence, permutation grows up pretty fast ☻.
Fibonacci numbers

The Fibonacci numbers are defined with the following recurrence:

\[F(0) = 0, \]
\[F(1) = 1, \]
\[F(n) = F(n - 1) + F(n - 2), \quad n \geq 2. \]

Thus, it leads to the sequence 0, 1, 1, 2, 3, 5, 8, 13, \ldots.

Let \(\phi \) and \(\phi' \) denote \(\frac{1+\sqrt{5}}{2} \) and \(\frac{1-\sqrt{5}}{2} \), respectively, we have that

\[F(n) = \frac{\phi^n - \phi'^n}{\sqrt{5}}. \]

Since \(|\phi'| < 1 \), we have that

\[\frac{|\phi'|^n}{\sqrt{5}} < \frac{1}{\sqrt{5}} < \frac{1}{2}. \]

Hence, we have that \(F(n) = \frac{\phi^n}{\sqrt{5}} \), rounded to the nearest integer. Thus, Fibonacci numbers grow exponentially.

Homework: Exercises 3.2-6 and 3.2-7.